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Overview: Life Is Work

• Living cells require energy from outside sources 
• Some animals, such as the chimpanzee, obtain 

energy by eating plants, and some animals feed 
on other organisms that eat plants
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Figure 9.1



• Energy flows into an ecosystem as sunlight and 
leaves as heat 

• Photosynthesis generates O2 and organic 
molecules, which are used in cellular 
respiration 

• Cells use chemical energy stored in organic 
molecules to regenerate ATP, which powers 
work
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Concept 9.1: Catabolic pathways yield energy by 
oxidizing organic fuels

• Several processes are central to cellular 
respiration and related pathways
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Catabolic Pathways and Production of ATP

• The breakdown of organic molecules is 
exergonic 

• Fermentation is a partial degradation of 
sugars that occurs without O2 

• Aerobic respiration consumes organic 
molecules and O2 and yields ATP 

• Anaerobic respiration is similar to aerobic 
respiration but consumes compounds other 
than O2
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• Cellular respiration includes both aerobic and 
anaerobic respiration but is often used to refer to 
aerobic respiration 

• Although carbohydrates, fats, and proteins are all 
consumed as fuel, it is helpful to trace cellular 
respiration with the sugar glucose 

   C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + Energy (ATP + heat)
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Redox Reactions: Oxidation and Reduction

• The transfer of electrons during chemical 
reactions releases energy stored in organic 
molecules 

• This released energy is ultimately used to 
synthesize ATP
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The Principle of Redox

• Chemical reactions that transfer electrons 
between reactants are called oxidation-reduction 
reactions, or redox reactions 

• In oxidation, a substance loses electrons, or is 
oxidized 

• In reduction, a substance gains electrons, or is 
reduced (the amount of positive charge is 
reduced)
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• The electron donor is called the reducing 
agent 

• The electron receptor is called the oxidizing 
agent 

• Some redox reactions do not transfer electrons 
but change the electron sharing in covalent 
bonds 

• An example is the reaction between methane 
and O2
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Oxidation of Organic Fuel Molecules During Cellular 
Respiration

• During cellular respiration, the fuel (such as 
glucose) is oxidized, and O2 is reduced
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Stepwise Energy Harvest via NAD+ and the Electron 
Transport Chain

• In cellular respiration, glucose and other organic 
molecules are broken down in a series of steps 

• Electrons from organic compounds are usually 
first transferred to NAD+, a coenzyme 

• As an electron acceptor, NAD+ functions as an 
oxidizing agent during cellular respiration 

• Each NADH (the reduced form of NAD+) 
represents stored energy that is tapped to 
synthesize ATP
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Figure 9.UN04
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• NADH passes the electrons to the electron 
transport chain 

• Unlike an uncontrolled reaction, the electron 
transport chain passes electrons in a series of 
steps instead of one explosive reaction 

• O2 pulls electrons down the chain in an energy-
yielding tumble 

• The energy yielded is used to regenerate ATP
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Figure 9.5
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The Stages of Cellular Respiration: A Preview

• Harvesting of energy from glucose has three 
stages 

– Glycolysis (breaks down glucose into two 
molecules of pyruvate) 

– The citric acid cycle (completes the 
breakdown of glucose) 

– Oxidative phosphorylation (accounts for 
most of the ATP synthesis)
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Figure 9.6-2
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Figure 9.6-3
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• The process that generates most of the ATP is 
called oxidative phosphorylation because it is 
powered by redox reactions
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• Oxidative phosphorylation accounts for almost 
90% of the ATP generated by cellular respiration 

• A smaller amount of ATP is formed in glycolysis 
and the citric acid cycle by substrate-level 
phosphorylation 

• For each molecule of glucose degraded to CO2 
and water by respiration, the cell makes up to 
32 molecules of ATP 
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Concept 9.2: Glycolysis harvests chemical energy by 
oxidizing glucose to pyruvate

• Glycolysis  (“splitting of sugar”) breaks down 
glucose into two molecules of pyruvate 

• Glycolysis occurs in the cytoplasm and has two 
major phases 

– Energy investment phase 
– Energy payoff phase 

• Glycolysis occurs whether or not O2 is present
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Figure 9.8
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Figure 9.9-3
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Figure 9.9-4

Glycolysis: Energy Investment Phase

ATP ATP
Glucose Glucose 6-phosphate Fructose 6-phosphate Fructose 1,6-bisphosphate

Dihydroxyacetone  
phosphate

Glyceraldehyde  
3-phosphate

To 
step 6

ADP ADP

Hexokinase Phosphogluco-  
isomerase

Phospho-  
fructokinase

Aldolase

Isomerase

1
2 3 4

5

10

2 3 carbon
sugar phosphates



Figure 9.9-5
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Figure 9.9-6
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Figure 9.9-7
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Figure 9.9-8
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Figure 9.9-9
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Figure 9.9a
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Figure 9.9b
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Figure 9.9c
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Figure 9.9d
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Concept 9.3: After pyruvate is oxidized, the citric acid cycle 
completes the energy-yielding oxidation of organic molecules

• In the presence of O2, pyruvate enters the 
mitochondrion (in eukaryotic cells) where the 
oxidation of glucose is completed
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Oxidation of Pyruvate to Acetyl CoA

• Before the citric acid cycle can begin, pyruvate 
must be converted to acetyl Coenzyme A 
(acetyl CoA), which links glycolysis to the citric 
acid cycle 

• This step is carried out by a multienzyme 
complex that catalyses three reactions
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• The citric acid cycle, also called the Krebs 
cycle, completes the break down of pyruvate to 
CO2 

• The cycle oxidizes organic fuel derived from 
pyruvate, generating 1 ATP, 3 NADH, and 1 
FADH2 per turn
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Figure 9.11
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• The citric acid cycle has eight steps, each 
catalyzed by a specific enzyme 

• The acetyl group of acetyl CoA joins the cycle by 
combining with oxaloacetate, forming citrate 

• The next seven steps decompose the citrate 
back to oxaloacetate, making the process a 
cycle 

• The NADH and FADH2 produced by the cycle 
relay electrons extracted from food to the 
electron transport chain

© 2011 Pearson Education, Inc.



Figure 9.12-1
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Figure 9.12-2
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Figure 9.12-3
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Figure 9.12-4
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Figure 9.12-5
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Figure 9.12-6
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Figure 9.12-7
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Figure 9.12-8
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Figure 9.12a
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Figure 9.12b
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Figure 9.12c
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Figure 9.12d
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Concept 9.4: During oxidative phosphorylation, 
chemiosmosis couples electron transport to ATP synthesis

• Following glycolysis and the citric acid cycle, 
NADH and FADH2 account for most of the 
energy extracted from food 

• These two electron carriers donate electrons to 
the electron transport chain, which powers ATP 
synthesis via oxidative phosphorylation
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The Pathway of Electron Transport

• The electron transport chain is in the inner 
membrane (cristae) of the mitochondrion 

• Most of the chain’s components are proteins, 
which exist in multiprotein complexes 

• The carriers alternate reduced and oxidized 
states as they accept and donate electrons 

• Electrons drop in free energy as they go down the 
chain and are finally passed to O2, forming H2O
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Figure 9.13
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• Electrons are transferred from NADH or FADH2 
to the electron transport chain 

• Electrons are passed through a number of 
proteins including cytochromes (each with an 
iron atom) to O2 

• The electron transport chain generates no ATP 
directly 

• It  breaks the large free-energy drop from food to 
O2 into smaller steps that release energy in 
manageable amounts
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Chemiosmosis: The Energy-Coupling Mechanism

• Electron transfer in the electron transport chain 
causes proteins to pump H+ from the 
mitochondrial matrix to the intermembrane space 

• H+ then moves back across the membrane, 
passing through the proton, ATP synthase  

• ATP synthase uses the exergonic flow of H+ to 
drive phosphorylation of ATP 

• This is an example of chemiosmosis, the use of 
energy in a H+ gradient to drive cellular work
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Figure 9.15
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• The energy stored in a H+ gradient across a 
membrane couples the redox reactions of the 
electron transport chain to ATP synthesis 

• The H+ gradient is referred to as a proton-
motive force, emphasizing its capacity to do 
work
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An Accounting of ATP Production by Cellular 
Respiration

• During cellular respiration, most energy flows in 
this sequence:  

 glucose → NADH  → electron transport chain → 
proton-motive force → ATP 

• About 34% of the energy in a glucose molecule 
is transferred to ATP during cellular respiration, 
making about 32 ATP 

• There are several reasons why the number of 
ATP is not known exactly
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Concept 9.5: Fermentation and anaerobic  
respiration enable cells to produce ATP without the use of 
oxygen

• Most cellular respiration requires O2 to produce 
ATP 

• Without O2, the electron transport chain will 
cease to operate 

• In that case, glycolysis couples with 
fermentation or anaerobic respiration to produce 
ATP
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• Anaerobic respiration uses an electron 
transport chain with a final electron acceptor 
other than O2, for example sulfate 

• Fermentation uses substrate-level 
phosphorylation instead of an electron transport 
chain to generate ATP
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Types of Fermentation

• Fermentation consists of glycolysis plus 
reactions that regenerate NAD+, which can be 
reused by glycolysis 

• Two common types are alcohol fermentation 
and lactic acid fermentation
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• In alcohol fermentation, pyruvate is converted 
to ethanol in two steps, with the first releasing 
CO2 

• Alcohol fermentation by yeast is used in 
brewing, winemaking, and baking
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• In lactic acid fermentation, pyruvate is reduced 
to NADH, forming lactate as an end product, 
with no release of CO2 

• Lactic acid fermentation by some fungi and 
bacteria is used to make cheese and yogurt 

• Human muscle cells use lactic acid 
fermentation to generate ATP when O2 is 
scarce
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(b) Lactic acid fermentation

2 Lactate

2 Pyruvate

2 NADH

Glucose Glycolysis

2 ADP + 2 P i 2 ATP

2 NAD
+

+

2 H+

Figure 9.17b



Comparing Fermentation with Anaerobic and Aerobic Respiration

• All use glycolysis (net ATP = 2) to oxidize glucose 
and harvest chemical energy of food 

• In all three, NAD+ is the oxidizing agent that accepts 
electrons during glycolysis 

• The processes have different final electron 
acceptors: an organic molecule (such as pyruvate 
or acetaldehyde) in fermentation and O2 in cellular 
respiration 

• Cellular respiration produces 32 ATP per glucose 
molecule; fermentation produces 2 ATP per glucose 
molecule 
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• Obligate anaerobes carry out fermentation or 
anaerobic respiration and cannot survive in the 
presence of O2 

• Yeast and many bacteria are facultative 
anaerobes, meaning that they can survive using 
either fermentation or cellular respiration 

• In a facultative anaerobe, pyruvate is a fork in 
the metabolic road that leads to two alternative 
catabolic routes
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Figure 9.18
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The Evolutionary Significance of Glycolysis

• Ancient prokaryotes are thought to have used 
glycolysis long before there was oxygen in the 
atmosphere 

• Very little O2 was available in the atmosphere 
until about 2.7 billion years ago, so early 
prokaryotes likely used only glycolysis to 
generate ATP 

• Glycolysis is a very ancient process
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Concept 9.6: Glycolysis and the citric acid cycle 
connect to many other metabolic pathways

• Gycolysis and the citric acid cycle are major 
intersections to various catabolic and anabolic 
pathways
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The Versatility of Catabolism

• Catabolic pathways funnel electrons from many 
kinds of organic molecules into cellular 
respiration 

• Glycolysis accepts a wide range of 
carbohydrates 

• Proteins must be digested to amino acids; amino 
groups can feed glycolysis or the citric acid cycle
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• Fats are digested to glycerol (used in 
glycolysis) and fatty acids (used in generating 
acetyl CoA)  

• Fatty acids are broken down by beta oxidation 
and yield acetyl CoA 

• An oxidized gram of fat produces more than 
twice as much ATP as an oxidized gram of 
carbohydrate
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Figure 9.19
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Biosynthesis (Anabolic Pathways)

• The body uses small molecules to build other 
substances 

• These small molecules may come directly 
from food, from glycolysis, or from the citric 
acid cycle
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Regulation of Cellular Respiration via Feedback 
Mechanisms

• Feedback inhibition is the most common 
mechanism for control 

• If ATP concentration begins to drop, 
respiration speeds up; when there is plenty of 
ATP, respiration slows down 

• Control of catabolism is based mainly on 
regulating the activity of enzymes at strategic 
points in the catabolic pathway
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Figure 9.20
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Figure 9.UN06
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Figure 9.UN07
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Figure 9.UN08
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Figure 9.UN09
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Figure 9.UN10
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Figure 9.UN11


