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Overview: The Process That Feeds the Biosphere

• Photosynthesis is the process that converts 
solar energy into chemical energy 

• Directly or indirectly, photosynthesis nourishes 
almost the entire living world
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• Autotrophs sustain themselves without eating 
anything derived from other organisms 

• Autotrophs are the producers of the biosphere, 
producing organic molecules from CO2 and other 
inorganic molecules 

• Almost all plants are photoautotrophs, using the 
energy of sunlight to make organic molecules
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• Photosynthesis occurs in plants, algae, certain 
other protists, and some prokaryotes 

• These organisms feed not only themselves but 
also most of the living world
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• Heterotrophs obtain their organic material from 
other organisms 

• Heterotrophs are the consumers of the 
biosphere 

• Almost all heterotrophs, including humans, 
depend on photoautotrophs for food and O2
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• The Earth’s supply of fossil fuels was formed 
from the remains of organisms that died 
hundreds of millions of years ago 

• In a sense, fossil fuels represent stores of solar 
energy from the distant past
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Concept 10.1: Photosynthesis converts light energy 
to the chemical energy of food

• Chloroplasts are structurally similar to and likely 
evolved from photosynthetic bacteria  

• The structural organization of these cells allows 
for the chemical reactions of photosynthesis
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Chloroplasts: The Sites of Photosynthesis in Plants

• Leaves are the major locations of 
photosynthesis 

• Their green color is from chlorophyll, the green 
pigment within chloroplasts 

• Chloroplasts are found mainly in cells of the 
mesophyll, the interior tissue of the leaf 

• Each mesophyll cell contains 30–40 
chloroplasts
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• CO2 enters and O2 exits the leaf through 
microscopic pores called stomata 

• The chlorophyll is in the membranes of 
thylakoids (connected sacs in the chloroplast); 
thylakoids may be stacked in columns called 
grana 

• Chloroplasts also contain stroma, a dense 
interior fluid 
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Tracking Atoms Through Photosynthesis: Scientific 
Inquiry

• Photosynthesis is a complex series of reactions 
that can be summarized as the following 
equation:

6 CO2 + 12 H2O + Light energy → C6H12O6 + 6 O2 + 6 H2O 
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The Splitting of Water

• Chloroplasts split H2O into hydrogen and oxygen, 
incorporating the electrons of hydrogen into 
sugar molecules and releasing oxygen as a by-
product

© 2011 Pearson Education, Inc.

1



Figure 10.5

Reactants:

Products:

6 CO2

6 H2O 6 O2

12 H2O

C6H12O6

17



Photosynthesis as a Redox Process

• Photosynthesis reverses the direction of electron 
flow compared to respiration 

• Photosynthesis is a redox process in which H2O 
is oxidized and CO2 is reduced 

• Photosynthesis is an endergonic process; the 
energy boost is provided by light
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The Two Stages of Photosynthesis: A Preview

• Photosynthesis consists of the light 
reactions (the photo part) and Calvin cycle 
(the synthesis part) 

• The light reactions (in the thylakoids) 
– Split H2O 

– Release O2 
– Reduce NADP+ to NADPH 
– Generate ATP from ADP by 

photophosphorylation
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• The Calvin cycle (in the stroma) forms sugar 
from CO2, using ATP and NADPH 

• The Calvin cycle begins with carbon fixation, 
incorporating CO2 into organic molecules
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Concept 10.2: The light reactions convert solar 
energy to the chemical energy of ATP and NADPH

• Chloroplasts are solar-powered chemical 
factories 

• Their thylakoids transform light energy into the 
chemical energy of ATP and NADPH
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The Nature of Sunlight

• Light is a form of electromagnetic energy, also 
called electromagnetic radiation 

• Like other electromagnetic energy, light travels in 
rhythmic waves 

• Wavelength is the distance between crests of 
waves 

• Wavelength determines the type of 
electromagnetic energy
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• The electromagnetic spectrum is the entire 
range of electromagnetic energy, or radiation  

• Visible light consists of wavelengths (including 
those that drive photosynthesis) that produce 
colors we can see 

• Light also behaves as though it consists of 
discrete particles, called photons
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Photosynthetic Pigments: The Light Receptors

• Pigments are substances that absorb visible light 
• Different pigments absorb different wavelengths 
• Wavelengths that are not absorbed are reflected 

or transmitted 
• Leaves appear green because chlorophyll reflects 

and transmits green light

© 2011 Pearson Education, Inc.

Animation: Light and Pigments



Chloroplast

Light
Reflected 
light

Absorbed 
light

Transmitted 
light

Granum

Figure 10.8



• A spectrophotometer measures a pigment’s 
ability to absorb various wavelengths  

• This machine sends light through pigments and 
measures the fraction of light transmitted at each 
wavelength
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• An absorption spectrum is a graph plotting a 
pigment’s light absorption versus wavelength 

• The absorption  spectrum of chlorophyll a 
suggests that violet-blue and red light work best 
for photosynthesis 

• An action spectrum profiles the relative 
effectiveness of different wavelengths of radiation 
in driving a process
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• The action spectrum of photosynthesis was first 
demonstrated in 1883 by Theodor W. Engelmann 

• In his experiment, he exposed different segments 
of a filamentous alga to different wavelengths 

• Areas receiving wavelengths favorable to 
photosynthesis produced excess O2 

• He used the growth of aerobic bacteria clustered 
along the alga as a measure of O2 production
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• Chlorophyll a is the main photosynthetic pigment 
• Accessory pigments, such as chlorophyll b, 

broaden the spectrum used for photosynthesis 
• Accessory pigments called carotenoids absorb 

excessive light that would damage chlorophyll
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Excitation of Chlorophyll by Light

• When a pigment absorbs light, it goes from a 
ground state to an excited state, which is 
unstable 

• When excited electrons fall back to the ground 
state, photons are given off, an afterglow called 
fluorescence 

• If illuminated, an isolated solution of chlorophyll 
will fluoresce, giving off light and heat
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A Photosystem: A Reaction-Center Complex 
Associated with Light-Harvesting Complexes

• A photosystem consists of a reaction-center 
complex (a type of protein complex) surrounded 
by light-harvesting complexes 

• The light-harvesting complexes (pigment 
molecules bound to proteins) transfer the energy 
of photons to the reaction center
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Figure 10.13
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Figure 10.13a

(a) How a photosystem harvests light
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Figure 10.13b

(b) Structure of photosystem II
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• A primary electron acceptor in the reaction 
center accepts excited electrons and is reduced 
as a result 

• Solar-powered transfer of an electron from a 
chlorophyll a molecule to the primary electron 
acceptor is the first step of the light reactions
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• There are two types of photosystems in the 
thylakoid membrane 

• Photosystem II (PS II) functions first (the 
numbers reflect order of discovery) and is best at 
absorbing a wavelength of 680 nm 

• The reaction-center chlorophyll a of PS II is called 
P680
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• Photosystem I (PS I) is best at absorbing a 
wavelength of 700 nm 

• The reaction-center chlorophyll a of PS I is called 
P700
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Linear Electron Flow

• During the light reactions, there are two possible 
routes for electron flow: cyclic and linear 

• Linear electron flow, the primary pathway, 
involves both photosystems and produces ATP 
and NADPH using light energy

© 2011 Pearson Education, Inc.



• A photon hits a pigment and its energy is passed 
among pigment molecules until it excites P680 

• An excited electron from P680 is transferred to 
the primary electron acceptor (we now call it 
P680+)
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• P680+ is a very strong oxidizing agent 
• H2O is split by enzymes, and the electrons are 

transferred from the hydrogen atoms to P680+, 
thus reducing it to P680 

• O2 is released as a by-product of this reaction
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Figure 10.14-2
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• Each electron “falls” down an electron transport 
chain from the primary electron acceptor of PS II 
to PS I 

• Energy released by the fall drives the creation of 
a proton gradient across the thylakoid membrane 

• Diffusion of H+ (protons) across the membrane 
drives ATP synthesis
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Figure 10.14-3
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• In PS I (like PS II), transferred light energy 
excites P700, which loses an electron to an 
electron acceptor 

• P700+ (P700 that is missing an electron) accepts 
an electron passed down from PS II via the 
electron transport chain
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Figure 10.14-4
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• Each electron “falls” down an electron transport 
chain from the primary electron acceptor of PS I 
to the protein ferredoxin (Fd) 

• The electrons are then transferred to NADP+ and 
reduce it to NADPH 

• The electrons of NADPH are available for the 
reactions of the Calvin cycle 

• This process also removes an H+ from the 
stroma
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Figure 10.14-5
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Cyclic Electron Flow

• Cyclic electron flow uses only photosystem I  
and produces ATP, but not NADPH 

• No oxygen is released 
• Cyclic electron flow generates surplus ATP, 

satisfying the higher demand in the Calvin cycle
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Figure 10.16
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• Some organisms such as purple sulfur bacteria 
have PS I but not PS II 

• Cyclic electron flow is thought to have evolved 
before linear electron flow 

• Cyclic electron flow may protect cells from  
light-induced damage
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A Comparison of Chemiosmosis in Chloroplasts and 
Mitochondria

• Chloroplasts and mitochondria generate ATP by 
chemiosmosis, but use different sources of 
energy 

• Mitochondria transfer chemical energy from food 
to ATP; chloroplasts transform light energy into 
the chemical energy of ATP 

• Spatial organization of chemiosmosis differs 
between chloroplasts and mitochondria but also 
shows similarities
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• In mitochondria, protons are pumped to the 
intermembrane space and drive ATP synthesis as 
they diffuse back into the mitochondrial matrix 

• In chloroplasts, protons are pumped into the 
thylakoid space and drive ATP synthesis as they 
diffuse back into the stroma
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• ATP and NADPH are produced on the side 
facing the stroma, where the Calvin cycle takes 
place

• In summary, light reactions generate ATP and 
increase the potential energy of electrons by 
moving them from H2O to NADPH
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Concept 10.3: The Calvin cycle uses the chemical energy of ATP 
and NADPH to reduce CO2 to sugar

• The Calvin cycle, like the citric acid cycle, 
regenerates its starting material after molecules 
enter and leave the cycle 

• The cycle builds sugar from smaller molecules 
by using ATP and the reducing power of 
electrons carried by NADPH
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• Carbon enters the cycle as CO2 and leaves as 
a sugar named glyceraldehyde 3-phospate 
(G3P) 

• For net synthesis of 1 G3P, the cycle must take 
place three times, fixing 3 molecules of CO2 

• The Calvin cycle has three phases 
– Carbon fixation (catalyzed by rubisco) 
– Reduction 
– Regeneration of the CO2 acceptor (RuBP)
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Concept 10.4: Alternative mechanisms of carbon 
fixation have evolved in hot, arid climates

• Dehydration is a problem for plants, sometimes 
requiring trade-offs with other metabolic 
processes, especially photosynthesis

• On hot, dry days, plants close stomata, which 
conserves H2O but also limits photosynthesis 

• The closing of stomata reduces access to CO2 
and causes O2  to build up 

• These conditions favor an apparently wasteful 
process called photorespiration

© 2011 Pearson Education, Inc.



Photorespiration: An Evolutionary Relic?

• In most plants (C3 plants), initial fixation of CO2, 
via rubisco, forms a three-carbon compound (3-
phosphoglycerate) 

• In photorespiration, rubisco adds O2 instead of 
CO2 in the Calvin cycle, producing a two-carbon 
compound 

• Photorespiration consumes O2 and organic fuel 
and releases CO2 without producing ATP or 
sugar
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• Photorespiration may be an evolutionary relic 
because rubisco first evolved at a time when the 
atmosphere had far less O2 and more CO2  

• Photorespiration limits damaging products of light 
reactions that build up in the absence of the 
Calvin cycle  

• In many plants, photorespiration is a problem 
because on a hot, dry day it can drain as much as 
50% of the carbon fixed by the Calvin cycle
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C
4
 Plants

• C4 plants minimize the cost of photorespiration 
by incorporating CO2 into four-carbon 
compounds in mesophyll cells 

• This step requires the enzyme PEP carboxylase 
• PEP carboxylase has a higher affinity for CO2 

than rubisco does; it can fix CO2 even when CO2 
concentrations are low 

• These four-carbon compounds are exported to 
bundle-sheath cells, where they release CO2 
that is then used in the Calvin cycle
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Figure 10.20
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Figure 10.20a
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Figure 10.20b
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• In the last 150 years since the Industrial 
Revolution, CO2 levels have risen greatly 

• Increasing levels of CO2 may affect C3 and C4 
plants differently, perhaps changing the relative 
abundance of these species 

• The effects of such changes are unpredictable 
and a cause for concern
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CAM Plants

• Some plants, including succulents, use 
crassulacean acid metabolism (CAM) to fix 
carbon 

• CAM plants open their stomata at night, 
incorporating CO2 into organic acids 

• Stomata close during the day, and CO2 is 
released from organic acids and used in the 
Calvin cycle
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The Importance of Photosynthesis: A Review

• The energy entering chloroplasts as sunlight gets 
stored as chemical energy in organic compounds 

• Sugar made in the chloroplasts supplies chemical 
energy and carbon skeletons to synthesize the 
organic molecules of cells 

• Plants store excess sugar as starch in structures 
such as roots, tubers, seeds, and fruits 

• In addition to food production, photosynthesis 
produces the O2 in our atmosphere
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